Enrollment No:

Exam Seat No:____

C.U.SHAH UNIVERSITY

Summer Examination-2018

Subject Name: Engineering Mathematics - II

Subject Code: 4TE02EMT2 Branch: B.Tech (All)

Semester: 2 Date: 25/04/2018 Time: 10:30 To 01:30 Marks: 70

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1 Attempt the following questions:

(14)

- a) The value of $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^7 x \, dx$ is
 - (A) $\frac{32\pi}{35}$ (B) $\frac{32}{35}$ (C) zero (D) $\frac{16}{35}$
- **b)** If $f_n = \int_{0}^{\frac{\pi}{4}} \tan^n x \, dx$, then $(f_n + f_{n-2})$ is equal to _____.

(A)
$$\frac{1}{n}$$
 (B) $\frac{1}{n-1}$ (C) $\frac{n}{n-1}$ (D) $\frac{n-1}{n}$

- c) B(1,1) =_____
 - (A) 1 (B) 0 (C) 1/2 (D) none of these
- $\mathbf{d}) \quad \boxed{\frac{1}{4} \boxed{\frac{3}{4}} = }$
 - (A) $\frac{\pi}{\sqrt{2}}$ (B) $\pi\sqrt{2}$ (C) $\sqrt{2\pi}$ (D) none of these
- e) $\int_{0}^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1 2\sin^2 \theta}}$ is equal to
 - (A) $\frac{1}{\sqrt{2}}E\left(\frac{1}{\sqrt{2}}\right)$ (B) $\frac{1}{2}K\left(\frac{1}{\sqrt{2}}\right)$ (C) $\frac{1}{\sqrt{2}}K\left(\frac{1}{\sqrt{2}}\right)$ (D) $\frac{1}{2}E\left(\frac{1}{\sqrt{2}}\right)$
- **f**) erf(-x) is
 - (A) an odd function (B) an even function (C) neither odd nor even function (D) none of these
- g) If the power of x are even, then the curve is symmetrical about (A) X-axis (B) Y-axis (C) about both X and Y axes (D) none of these

- **h)** The curve $x^3 + y^3 = 3axy$ represent
 - (A) Cissoid of Diocle (B) Witch of Agnesi (C) Strophoid
 - (D) Folium of Descartes

i)
$$\int_{0}^{a} \int_{0}^{\sqrt{a^2 - y^2}} dx dy \text{ is equal to}$$

(A)
$$\pi a^2$$
 (B) $\frac{\pi a^2}{2}$ (C) $\frac{\pi a^2}{4}$ (D) none of these

j) On converting into polar coordinates $\int_{0}^{2a} \int_{0}^{\sqrt{2ax-x^2}} dx \ dy$ is equal to

(A)
$$\int_{0}^{\pi} \int_{0}^{2a\cos\theta} r \, dr \, d\theta$$
 (B)
$$\int_{0}^{\frac{\pi}{2}} \int_{0}^{2a\cos\theta} r \, dr \, d\theta$$
 (C)
$$\int_{0}^{\frac{\pi}{2}} \int_{0}^{2a\sin\theta} r \, dr \, d\theta$$
 (D) none of these

- **k)** The degree and order of the differential equation of all parabolas whose axis is x-axis are
 - (A) 2, 1 (B) 1, 2 (C) 3, 2 (D) none of these
- 1) The solution of the equation $(x+y)^2 \frac{dy}{dx} = a^2$ is

(A)
$$(x+y)-a \tan^{-1}\left(\frac{x+y}{a}\right) = x+c$$
 (B) $(x+y)a \tan x = x+c$

(C)
$$(x+y)-a\cos a = x+c$$
 (D) none of these

m) The infinite series $1+r+r^2+....+r^{n-1}+...$ is divergent if

(A)
$$|r| < 1$$
 (B) $|r| > 1$ (C) $r \ge 1$ (D) $r = -1$

- n) The sum of the series $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} = 1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \dots$ is
 - (A) log 2 (B) zero (C) infinite (D) none of these

Attempt any four questions from Q-2 to Q-8

Q-2 Attempt all questions (14)

a) Using reduction formula prove that
$$\int_{0}^{\pi} x \sin^{7} x \cos^{4} x \, dx = \frac{16\pi}{1155}$$
 (5)

b) Evaluate:
$$\int_{0}^{\infty} x^4 e^{-x^4} dx$$
 (5)

c) Evaluate:
$$\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} \int_{0}^{\sqrt{1-x^2-y^2}} \frac{dx \, dy \, dz}{\sqrt{1-x^2-y^2-z^2}}$$
 (4)

Q-3 Attempt all questions (14)

a) Show that
$$\int_{0}^{1} \frac{dx}{\sqrt{1-x^{n}}} = \frac{\sqrt{\pi}}{n} \cdot \frac{\left| \frac{1}{n} \right|}{\left| \frac{1}{n} + \frac{1}{2} \right|}$$
 (5)

b) Solve:
$$xdy - ydx = \sqrt{x^2 + y^2} dx$$
 (5)

	c)	Test the convergence of the series $\sum_{n=1}^{\infty} \frac{\tan^{-1} n}{n^2 + 1}$.	(4)
Q-4		Attempt all questions	(14)
	a)	Evaluate $\int_{0}^{a} \int_{0}^{\sqrt{a^2-y^2}} (x^2+y^2) dx dy$ by changing into polar coordinates.	(5)
	b)	Test for convergence the series $\sum_{n=1}^{\infty} \frac{\left[(n+1)x\right]^n}{n^{n+1}}$.	(5)

c) Evaluate:
$$\int_{0}^{\frac{\pi}{6}} \cos^6 3\theta \sin^2 6\theta \ d\theta$$

Q-5

Attempt all questions (14)

a) Solve:
$$\frac{dy}{dx} + 2y \tan x = \sin x$$
 given that $y = 0$ when $x = \frac{\pi}{3}$. (5)

 $\iint_{V}^{\infty} \frac{e^{-y}}{y} dy dx \text{ and evaluate it.}$ Change the order of integration in the integral **(5)** b)

c) Prove that
$$B(m,n) = B(m,n+1) + B(m+1,n)$$
 (4)

Q-6 Attempt all questions

Test the convergence of the series $\frac{1}{1\cdot 2\cdot 3} + \frac{3}{2\cdot 3\cdot 4} + \frac{5}{3\cdot 4\cdot 5} + \dots$ **(5)**

b) Using reduction formula prove that
$$\int_{0}^{a} x^{5} \left(2a^{2} - x^{2}\right)^{-3} dx = \frac{1}{2} \left(\log 2 - \frac{1}{2}\right).$$
 (5)

c) Solve:
$$(y^2 e^{xy^2} + 4x^3) dx + (2xy e^{xy^2} - 3y^2) dy = 0$$
 (4)

Attempt all questions Q-7

(14)Trace the curve $y^2(2a-x)=x^3$. **(5)**

Find the volume of the solid generated by the revolution of the loop of the curve **(5)** $x(x^2+y^2)=a(x^2-y^2)$ about the x – axis.

c) Evaluate:
$$\int_{0}^{\frac{\pi}{2}} \frac{dx}{\sqrt{\cos x}}$$
 (4)

Q-8 Attempt all questions

(14)For small values of x, show that $erf(x) = \frac{2}{\sqrt{\pi}} \left(x - \frac{x^3}{1!3} + \frac{x^5}{2!5} - \frac{x^7}{3!7} + \dots \right)$. **(5)**

Trace the curve $r^2 = a^2 \cos 2\theta$. b) **(5)**

Find the length of the arc of the curve $y = \log \sec x$ from x = 0 to $x = \frac{\pi}{3}$. **(4)**

(4)

(14)